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Double Dueling Agent
for Dialogue Policy Learning

Yu-An Wang

https://github.com/MiulLab/E2EDialog
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Microsoft Dialogue Challenge

e Double Dueling DQN

Movie Leaderboard

Rank Model Success Rate (Simulation) Success Rate (Human) Rating (Human)
1 Double Q 41.8% 31.1% 2.65/5
National Taiwan Unisversity
1 DQN 44.1% 30.8% 2.62/5
single model



Outline

Variants of DQN
o DQN
o Double DQN
o Dueling DQN
o Prioritized DQN
o Distributional DQN
Exploration Strategies
o Noisy DQN
o  Curiosity-based Exploration
Experiments On Task-completion Dialogue Policy
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What is the BEST RL Algorithm
for Dialogue Policy?

There are to many RL algorithms: Policy Gradient, Actor-Critic, DDPG, PPO,
DQN, DDQN, Distributional DQN......etc



Rainbow

https://arxiv.org/pdf/17
10.02298.pdf
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e Combine 5 variants of DQN and test on
Atari 2600
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Deep Q-Networks (DQN)

e Value-based RL algorithm
e Learn a Q-Value function obeys a Bellman Equation

Q*(s,a) = Ey [r +vQ*(s',a’)|s', d]
e Loss Function

L(0) = E[(r + ymaxy Q(s',a',0') — Q(s,a,0))’]
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Double DQN and Dueling DQN '

e Double DQN: Decouple selection and evaluation

L(H) — E[(’r + IYma'Xa’ Q(sl’ a’,7 Ol) T Q(s, a’? 0))2]

'

L(0) = E[(r +Q(s', argmax, Q(s',a',0),6') — Q(s, a,0))?]

e Dueling DQN: Split Q-value into advantage function and value function

Q(s,a) = A(s,a) + V(s) — Na;ons > A(s, a;)
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Distributional DQN (Categorical DQN) *

e Learn the distribution of value function
e Use aset of atoms to model a discrete distribution

{2 = Vipin + (22— "”")|O<z<N}

e Project the target distribution on the support vector, then minimize
KL-divergence

L(6) = D1 (®T Zy (s,a)||Zs(s,a))



Prioritized DQN

e Assign every transition a priority in replay buffer
pi = |r +ymaxQ(s},a},0') — Q(si,a;,0)["

e Sample transitions with probability according to priorities



Exploration
Strategies
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Noisy DQN '

e Add noise in linear layer to induce stochastic exploration

y=wx+b
‘ W b)
fre
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Curiosity-based Exploration

Use error of next state’s prediction

as intrinsic reward
High error -> the state is novel for

the agent
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Experiments




Setup

e Task: Movie-Ticket Booking
e FEach model trained 5 times
with different random seeds
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Movie-Ticket Booking Task

usr: Can I get tickets for zoolander 2 tomorrow?
agt: Which city would you like?

usr: I want to watch at seattle.

agt: How many tickets do you need?

usr: I want 2 tickets please!

agt: 9:25 pm is available.

usr: [ want to watch at regal meridian 16.
agt: Great - [ was able to purchase 2 tickets
for you to see zoolander 2 tomorrow at regal
meridian 16 theater in seattle at 9:25 pm.
usr: Thank you.

agt: Thank you.

Success




Variants of DQN

e Dueling DQN performs best

e DOQN and Distributional DQN
sometimes fail
Prioritized DQN always fails
Final choice: Double + Dueling

Success Rate
© © ©
N w >

=
i

o
(=)

DQON

Double DQN
Dueling DQN
Prioritized DQN
Distributional DQN

o

50

100 150 200 250
Simulation Epoch

300



CuLas; -5

Exploration Strategies

e Choosing a suitable exploration strategy can make training more stable
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Conclusions

e Dueling DQN performs best in this task
e Suitable exploration strategies can make training more stable



Thanks for Listening

The code is available here: https://github.com/MiuLab/E2EDialog

The paper with more details Investigating Variants of Deep Q-Networks for
Task-Completion Dialogue Policy Will be available on arxiv soon.


https://github.com/MiuLab/E2EDialog
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